## MATH 2050 C Lecture 13 (Mar 1)

Reminder: Midtern this Thursday 8:30am-10:15 am Please email me if you have hard submission deadling any questions before / during the test. Recall: "Subsequences" Let (Xn)nein be a seq. For any strictly increasing ni<nz<nz<.... of natural numbers. we can form a subseq. (Xnk)ken  $(\chi_{n_k})_{k\in\mathbb{N}} = (\chi_{n_1}, \chi_{n_2}, \chi_{n_3}, \dots)$ Thm: (xn) ~ x <> EVERY subseq (Xnk) ~ x Remark: Hence, to show (Xn) \*> X, we need to find (1) = subseq (Xnk) which divergent (ii) two subseq conversing to different limits. ution: (In) may Thm: "(Xn) closs NOT converge to X " be converging to some z' = x  $|X_{n_k} - \chi| \ge \varepsilon_0$   $\forall k \in \mathbb{N}$ 

Proof: From def". "(In) does converge to x " \( \lambda \), \( \lambda \) 1xn-x1< 2 Vn3K Taking the negation of the statement. "(Xn) does NOT converge to " 1×nk - × 1 > 20 Idea: take K=1.2.3,... obtain N, , n2, N3,... Want to define the subseq. (Xnk) KGIN Caution : We may not have ni cn2 cn3 c... Further refihement : need to choose nk's more carefully. Do it one term at a time. · For K=1, (\*) => 3 n, > 1 st 12n, - × 13 20 · For k=n,+1, (\*) => => => n, > n, +1 st. |Xn2-x13 E0 Repeat ~> (Xnk) kon st 12nk - x1 2 Eo

| Recall: MCT: (In) bad & monstone => (In) convergent.                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Q: What can we say if (Xn) is ONLY bdd?                                                                                              |
| Bolzano-Weierstrass Thm "BWT"                                                                                                        |
| (Xn) bdd => = subseq. (Xnk) which is convergent                                                                                      |
| Remark: $((-1)^n) = (X_n)$ has conversing subseq.                                                                                    |
| $(1, 1,) \rightarrow 1$ and $(-1, -1, -1,) \rightarrow -1$ .                                                                         |
| which have different limits.                                                                                                         |
| (NZP)                                                                                                                                |
| Proof: Our prove is based on the "Nested Interval Property"                                                                          |
| $I_1 \ge I_2 \ge I_3 \ge \cdots \implies \bigcap_{n \ge 1}^{\infty} I_n \neq \phi$                                                   |
| closed $l$ bdd [If, Length (In) $\rightarrow 0$ , then ]                                                                             |
| closed $\mathcal{L}$ bdd<br>$\begin{bmatrix} Tf, Length(In) \rightarrow 0, then \\ \bigcap & In = \{\xi\} \\ n \geq 1 \end{bmatrix}$ |
| GOAL : Construct intervals In satisfying the hypothesis,                                                                             |
| using the "method of bisection"                                                                                                      |
| Let (Xn) be a bdd seg, ie. 3 M>0 st.                                                                                                 |
| IXNIEM YNEN.                                                                                                                         |

Define  $I_1 := [a_{1,b_1}] = [-M, M]$ 

Notice that Xn G II V n G N



Inductively, we constructed a seq. of closed for bodd intervals

I1 2 I2 2 I3 2 .... "nested"

St. • each In contains coly many terms in  $(X_n)$ • Length  $(I_n) = \frac{2M}{2^{n-1}} \longrightarrow 0$  as  $n \rightarrow \infty$ 

Apply NIP =>  $\bigcap_{n=1}^{n} I_n = \{3\}$  ie him (an) nz, " [an, bn] lin (ba) И Claim: = subseq. (Xnk) -> 3 Pf: Pick any N.C.N st Xn. E II. Then, pick N2>N, s.t Xn2 G I2, which is possible since Iz contains only many terms of (Xn). Then, pick N3> N2 st Xn3 E I3. Inductively, we obtain a seq. (Xnx) KGN st  $Xn_k \in I_k = [a_k, b_k] \quad \forall k \in N$ ak & Xnk & bk Uhein îe. Since lim (Gk) = lim (bk) = 3, by Squeeze Thm, then lim XnK = 3. ٥ We now give one application of BWT. Hop: Suppose (Xn) is a bodd seq. lim(In) = X <=> ANY convergent subseq. (In+) has lim Ink = X

Proof: "=)" trivial (done.)  
"<="By contradiction. Suppose (Xn) 
$$\neq$$
 2.  
By Thim before.  $\exists E_0 > 0 \& a subseq (Xn_k) st$   
 $|Xn_k - X| \geq E_0 \forall k \in IN \dots (\#)$   
Note that (Xn) bdd  $\Rightarrow$  (Xn\_k) bdd  
By BWT.  $\exists a$  further subseq (Xn\_{k\_k})\_{k \in IN}  
of (Xn\_k)\_{k \in IN} (which is a subset of (In)\_{new})  
which is convergent  
By hypothesis, lim Xn\_{k\_k} = X contradicting (#).  
Subsequential Limits: limsup & liminf  
Q: Griven a bdd seq. (Xn), what is  
 $L := \{ l \in IR \mid \exists subseq (Xn_k) = l \\ st lim (Xn_k) = l \end{bmatrix}$   
Examples: If lim(Xn)=X, then  $L = [X]$ .  
The (Xn) = ((-1)"), then  $L = \{ 1, -1 \}$ .

Note that since (Xn) is bold.

 $BwT \implies \mathcal{L} \neq \phi$ 

On the other hand, (Xn) bad means that 3M20 st IXnIEM ANGIN. ⇒ If (Xnk) is a converging subseq w. limit l. then -MSXnk SM VKGIN By Limit Thm. -M & lim Xn = 2 & M So,  $\phi \neq \mathcal{L} \subseteq [-M, M]$  is a non-empty bdd subset of iR. By Completeners of iR. the inf and sup of Z must exist in IR. Def":  $\lim \sup (X_n) = \lim (X_n) := \sup \mathcal{L}$  $\lim \inf (X_n) = \lim (X_n) := \inf \mathcal{L}$ 

Examples: If  $\lim_{x \to \infty} (x_n) = x$ , then  $\overline{\lim_{x \to \infty} (x_n)} = \lim_{x \to \infty} (x_n) = x = \lim_{x \to \infty} (x_n)$ .

Tf 
$$(x_n) = ((-1)^n)$$
, then  $\mathcal{L} = \{-1, 1\}$  hence  
 $\widehat{Rim}(x_n) = 1$  and  $\widehat{Rim}(x_n) = -1$   
Thm: Let  $(x_n)$  be a bdd seq. Define a new  
seq  $(U_m)$  by  $U_m := \sup \{x_n \mid n \ge m\}$ ,  $m \ge 1, 2, 3, ...$   
THEN:  $(U_m)$  is a decreasing seq. with  
 $\widehat{Rim}$   $U_m = \inf \{U_m \mid m \in Rv\} = \widehat{Rim}(x_n)$   
 $\widehat{Rim}$   $U_m = \inf \{U_m \mid m \in Rv\} = \widehat{Rim}(x_n)$   
 $\widehat{Rim}(x_n)$ .  
Exercise: Formulate  $A$  proof an analogous statement  
 $for \widehat{Rim}(x_n)$ .  
Proof: From the def? of  $U_m$ .  
 $(x_n) = (x_n, x_2, x_3, x_4, x_5, ..., x_n, ...)$   
 $sup = U_1$   $sup = U_2$   
(Recell:  $S_1 \in S_2 \implies sup S_1 \leq sup S_2$ )  
So,  $\forall m \in IN$ ,  $[x_n \mid n \ge m\} \supseteq [x_n \mid n \ge m+1]$ 

So, (Um) forms a decreasing seq. Since (Xn) is bold, (Nm) is also bold. By MCT,  $\lim_{m \to \infty} (\mathcal{U}_m) = \inf \{ \mathcal{U}_m \mid m \in \mathbb{N} \}$ It remains to show  $lim(\mathcal{U}_m) = imf \{ \mathcal{U}_m \mid m \in \mathbb{N} \} = lim(\mathcal{I}_n)$ m-a Step 1 : lim (Xn) < lim (Um) By def?, lim (Xn) = sup L. Take any LEL. by def?, I subseq (Xnk) of (Xn) s.t.  $(X_{n_k}) \longrightarrow \mathcal{L}$  as  $k \rightarrow \infty$  $X_{n_k} \leq U_{n_k} := \sup \{X_n \mid n \ge n_k\}$ YKEN. toke  $k \to \infty$ .  $\mathcal{L} \leq \lim_{k \to \infty} (\mathcal{U}_{n_k}) = \lim_{m \to \infty} (\mathcal{U}_m)$ Step 2: lim (Xn) > lim (Um)

· Choose M, 21 st

 $\mathcal{U}_{1} - 1 < \chi_{n_{1}} \leq \mathcal{U}_{1} = \sup [\chi_{n} | n \neq 1]$ 

• Choose N2>N, st

$$U_{n_{i+1}} - \frac{1}{2} < X_{n_2} \leq U_{n_{i+1}} = \sup \{X_n \mid n \geq n_{i+1}\}$$

Repeat inductively, we choose n. cn2 cn3 c...

st 
$$U_{n_{k+1}} - \frac{1}{K_{t_1}} < \chi_{n_k} \in U_{n_{k+1}}$$
  $\forall k \in \mathbb{N}$ 

Take k+00, by Squeeze Thm.

$$lim(Mm) = lim(Mn_k) \in \mathcal{L}_{k \neq \infty}$$

Д