MATH 2050 C Lecture 13 (Mar 1)

Reminder: Midterm this Thursday 8:30am-10:15am Please email me if you have hard submission deadline any questions before / during the test. Recall: "Subsequences" Let $(x_n)_{n\in\mathbb{N}}$ be a seq. For any strictly increasing $M_i < M_2 < M_3 < \cdots$ of natural numbers we can form a subseq. $(X_{n_k})_{k \in \mathbb{N}}$ $(X_{n_{k}})_{k\in\mathbb{N}} = (X_{n_{1}}, X_{n_{2}}, X_{n_{3}},...)$ Thm: $(x_n) \rightarrow x \iff Every subspace_{\{x_{n_k}\}} \rightarrow x$ Remark: Hence, to show $(x_n) \nrightarrow x$, we need to find ⁱ ⁷ subseq Kuk which divergent (ii) two subseq converging to different limits.
Caution: (In) may Thm: " (xn) cloes NOT converge to x" be comerging to Some $x' \neq x$ \iff 3 $\&$ 30 AMP a subseq (χ_{n_k}) st $X_{h} - x$ 3 ξ_0 V kGIN

Proof: From def", (x_n) does converge to x " K=> VEJO, FKEN ST. $|x_n - x| < \varepsilon$ $\forall n > k$ Taking the negation of the statement. " (in) does Not converge to 2" $\langle z \rangle$ 3 $\{3 \&3 \&3 \text{ st } \forall k \in N : 3 n_k \}$ k $st | ... (k)$ $|X_{n_k} - X| \ge \xi_0$ Idea: take K=1.2.3.... obtain n, n2.n3... Want to define the subseq. (Ink) KEIN Cantion: We may not have M, CM2 CM3 C ... Further refinement: need to choose no's more carefully. Do it one term at a time. F_{01} $K = 1$, $(K) = 3$ $n_1 > 1$ at $X_{n_1} - X$ 13 Σ_0 $|x_{12}-x| \ge \xi_0$ Repeat no $(x_{n_k})_{k\in\mathbb{N}}$ st $|z_{n_k}-x| \ge \varepsilon_0$

Define $\mathbf{L}_1 := [a_1, b_1] = [-M, M]$

Notice that Xn E I Vn G N

bold intervals

 $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ inested

St . each In contains ∞ ly many terms in (x_n) 2M Length $(I_n) = \frac{1}{2^{n-1}} \to 0$ as $n \to \infty$

Apply $NIP \implies \bigcap_{n=1}^{n} I_n = \{\xi\}$ ie $\lim_{n \to \infty} (I_n)$ <u>ب</u>
. $\begin{bmatrix} u & & & \end{bmatrix}$
Canbn $\begin{bmatrix} u & & \end{bmatrix}$ $Claim: \exists$ subseq. $(X_{n_k}) \rightarrow \xi$ Pf: Pick any n₁ c N st In, E 1 Then, pick $N_2 > N_1$ st $X_{n_2} \in \mathbb{Z}_2$, which is possible since Iz contains ϖ' ly many terms o f (χ_n) . Then, pick $n_3 > n_2$ st $X_{n_3} \in \mathbb{Z}_3$. Inductively, we obtain a seq. $(x_{n_k})_{k\in\mathbb{N}}$ St $X_{n_k} \in I_k = [a_k, b_k]$ V k G IN ie $a_k \leqslant x_{n_k} \leqslant b_k$ the EIN Since $lim (a_k) = lim (b_k) =$ 3. by Squeeze Thus, then lim Xnk \mathcal{L} -) \mathcal{R} D We now give one application of BWT. $Prop:$ Suppose (x_n) is a bdd seg. $lim(x_n) = x \leq x$ ANY convergent subseq. (x_{n_k}) has $\lim_{k \to \infty} \chi_{n_k} = \chi$

Proof:	\n $^{\circ}$ = 7°, $^{\circ}$ + $^{\circ}$ + $^{\circ}$ = 8°, $^{\circ}$ = 1000\n
\n $^{\circ}$ = 8°, $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 8°, $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	
\n $^{\circ}$ = 1000\n	

Note that since (Xn) is bold.

 $BwT \implies \mathcal{L} \neq \phi$

On the other hand, (x_n) bdd means that $\exists M$ 20 s.t $|X_{n}| \leq M$ $\forall n \in \mathbb{N}$. \Rightarrow If (x_{n_k}) is a conversing subseq w. limit ℓ . then $-M \leq X_{n_k} \leq M$ V k G M By Limit Thm. $-M \leq lim_{k \to m} X_{n_k} = 2 \leq M$ S_{0} , $\phi * L \subseteq [-M, M]$ is a non-empty bold subset of $R \cdot B$ y Completeness of R . the inf and sup of L must exist in R . D et²: Simsup $(X_n) = k$ im $(X_n) := \text{supp}$ \liminf $(\lambda_n) = \lim_{n \to \infty} (\lambda_n) == \inf_{n \in \mathbb{Z}}$

 $Existence: If $lim(x_n) = x$, then$ $\lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (x_n) = x = \lim_{n \to \infty} (x_n)$

If
$$
(x_n) = ((-1)^n)
$$
, then $\mathcal{L} = \{-1, 1\}$ hence
\n $\overline{\mathcal{L}im}(x_n) = 1$ and $\overline{\mathcal{L}im}(x_n) = -1$
\n $\overline{\text{Thm}}$: Let (x_n) be a bold seq. Define a new
\n $\overline{\text{seq}}(u_m)$ by $u_m := \sup \{x_n | n \ge m\}$. m=1.2.5,...
\n $\overline{\text{Th}} = 1$ (lim) is a decreasing seq. with
\n $\overline{\mathcal{L}im}(u_m) = \inf \{u_m | m \in \mathbb{N}\} = \overline{\mathcal{L}im}(x_n)$
\n $\overline{\text{Exercise: Formulae: } Lipn(x_n)$.
\n $\overline{\text{Proof: }}$: From the def.² of u_m .
\n $(x_n) = (\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3, \mathbf{X}_4, \mathbf{X}_5, ..., \mathbf{X}_n, \cdots)$
\n $\overline{\text{seq}} = u_1$ $\overline{\text{Sup}} = u_2$
\n $\{\overline{\text{Recall}}: S_i \in S_2 \implies \text{Supp } S_1 \le \sup S_2 \}$
\nSo, $\forall m \in \mathbb{N}$, $\{x_n | n \ge m\} \supseteq \{x_n | n \ge m\}$
\n $\overline{\text{H}m} \implies$ $u_m \ge \frac{u_m | n \ge m\}$

So, (Um) forms a decreasing seq. Since (xn) is bdd. (Xm) is also bold. By MCT, lim(Um) = inf {Um | m ϵ N)} It remains to show $\ln (u_m) = i\pi f \{ u_m | m \in N \} = \lim_{m \to \infty} (x_n)$ $M \rightarrow \infty$ Step 1: $lim (x_n) \leq lim (u_m)$ B_0 def?, $\overline{lim}(x_n) = sup L$. Take any led. by def?. \exists subseq. (x_{n_k}) of (x_n) s.t. $(X_{n_k}) \longrightarrow l$ as $k \rightarrow \infty$ $X_{n_k} \leq U_{n_k} := \sup \{ X_n \mid n \geq n_k \}$ YKEW. toke $k \rightarrow \infty$. $l \leq lim (u_{n_k}) = lim (u_m)$ $k - 0$ lim $(x_n) \geq l_{im}(u_m)$ Step 2:

Claim:
$$
lim (u_m) \in \mathbb{Z}
$$

We have to find a s-ssey. (x_{n_k}) of (x_n)
st. $(x_{n_k}) \rightarrow lim (u_m)$.

· Choose n, 2 1 st

$$
u_1 - 1 < \chi_{n_1} \leq u_1 = \sup \{x_n \mid n \in 1\}
$$

· Choose n2 > n, st

$$
u_{n_{1}+1} - \frac{1}{2} < \chi_{n_{2}} \leq u_{n_{1}+1} := sup \{ \chi_{n} | n \geq n_{1}+1 \}
$$

Repect inductively, we choose M, CM2 cM3 c...

$$
st \quad u_{n_{k+1}} - \frac{1}{kt_1} < x_{n_k} \in u_{n_{k+1}} \quad \forall k \in \mathbb{N}
$$

Take kras, by squeeze Thm.

$$
lim (u_m) = lim_{k \to \infty} (u_{n_k}) \in \mathcal{L}
$$

 \overline{a}